Research Units
Genomics and Breeding Unit

Francisco Luque Vázquez
Head of Unit

Francisco Luque Vázquez
Address: Building B3, office 346
ORCID: 0000-0003-1354-3533
Scopus Author ID: 35230584100
Researcher ID: E-8400-2016
- Phone:953212527
- Email:fjluque@ujaen.es
OliveTreeDB genomics website https://genomaolivar.dipujaen.es/db/index.php
OliveAtlas transcriptomics website https://www.oliveatlas.uma.es/easy_gdb/index.php
This unit develops studies related to the genome of the olive tree and its applications. Specifically, the main lines of research are:
- Olive tree genomics, with the main objective of assembling genomes of diverse varieties with high precision.
- Genetic variability of the olive tree and its applicability, such as obtaining genetic markers to achieve genetic improvements in the olive tree.
- Transcriptomic analysis applied to stress response, with special attention to resistance/susceptibility to verticillium wilt in olive trees.
- Transcriptomic analysis applied to development processes.
2023
Serrano, A., Rodríguez-Jurado, D., Ramírez-Tejero, J.A., Luque, F., López-Escudero, F.J., Belaj, A., Román, B., & León, L. (2023). Response to Verticillium dahliae infection in a genetically diverse set of olive cultivars. Scientia Horticulturae, 316, Article 112008. https://doi.org/10.1016/j.scienta.2023.112008
2022
Belaj, A., Ninot, A., Gómez-Gálvez, F.J., El Riachy, M., Gurbuz-Veral, M., Torres, M., Lazaj, A., Klepo, T., Paz, S., Ugarte, J., Baldoni, L., Lorite, I.J., Šatović, Z., & de la Rosa, R. (2022). Utility of EST-SNP Markers for Improving Management and Use of Olive Genetic Resources: A Case Study at the Worldwide Olive Germplasm Bank of Córdoba. Plants, 11, Article 921. https://doi.org/10.3390/plants11070921
Garrido-Godino, A.I., Cuevas-Bermúdez, A., Gutiérrez-Santiago, F., Mota-Trujillo, M.C., & Navarro, F. (2022). The Association of Rpb4 with RNA Polymerase II Depends on CTD Ser5P Phosphatase Rtr1 and Influences mRNA Decay in Saccharomyces cerevisiae. International Journal of Molecular Sciences, 23(4), Article 2002. https://doi.org/10.3390/ijms23042002
Lorite, I.J., Cabeza, J.M., Ruiz-Ramos, M., de la Rosa, R., Soriano, M.A., León, L., Santos, C., & Gabaldón-Leal, C. (2022). Enhancing the sustainability of Mediterranean olive groves through adaptation measures to climate change using modelling and response surfaces. Agricultural and Forest Meteorology, 313, Article 108742. https://doi.org/10.1016/j.agrformet.2021.108742
Moret, M., Ramírez-Tejero, J.A., Serrano, A., Ramírez-Yera, E., Cueva-López, M.D., Belaj, A., León, L., de la Rosa, R., Bombarely, A., & Luque, F. (2022). Identification of Genetic Markers and Genes Putatively Involved in Determining Olive Fruit Weight. Plants (Basel), 12(1), Article 155. https://doi.org/10.3390/plants12010155
Rapoport, H.F., Moreno-Alías, I., de la Rosa-Peinazo, M.Á., Frija, A., de la Rosa, R., & León, L. (2022). Floral Quality Characterization in Olive Progenies from Reciprocal Crosses. Plants, 11, Article 1285. https://doi.org/10.3390/plants11101285
Serrano-García, I., Olmo-García, L., Polo-Megías, D., Serrano, A., León, L., de la Rosa, R., Gómez-Caravaca, A.M., & Carrasco-Pancorbo, A. (2022). Fruit Phenolic and Triterpenic Composition of Progenies of Olea europaea subsp. cuspidata, an Interesting Phytochemical Source to Be Included in Olive Breeding Programs. Plants, 11, Article 1791. https://doi.org/10.3390/plants11141791
Yılmaz-Düzyaman, H., de la Rosa, R., & León, L. (2022). Seedling Selection in Olive Breeding Progenies. Plants, 11, Article 1195. https://doi.org/10.3390/plants11091195
2021
Begley, V., Jordán-Pla, A., Peñate, X., Garrido-Godino, A.I., Challal, D., Cuevas-Bermúdez, A., Mitjavila, A., Barucco, M., Gutiérrez, G., Singh, A., Alepuz, P., Navarro, F., Libri, D., Pérez-Ortín, J.E., & Chávez, S. (2021). Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configuration. RNA biology, 18(9), 1310–1323. https://doi.org/10.1080/15476286.2020.1845504
Calvo, O., Ansari, A., & Navarro, F. (2021). Editorial: The Lesser Known World of RNA Polymerases. Frontiers in Molecular Biosciences, 8, Article 811413. https://doi.org/10.3389/fmolb.2021.811413
Fernández-González, A.J., Ramírez-Tejero, J.A., Nevado-Berzosa, M.P., Luque, F., Fernández-López, M., & Mercado-Blanco, J. (2021). Coupling the endophytic microbiome with the host transcriptome in olive roots. Computational and Structural Biotechnology Journal, 19, 4777-4789. https://doi.org/10.1016/j.csbj.2021.08.035
Fernández-Parras, I., Ramírez-Tejero, J.A., Luque, F., & Navarro, F. (2021). Several Isoforms for Each Subunit Shared by RNA Polymerases are Differentially Expressed in the Cultivated Olive Tree (Olea europaea L.). Frontiers in Molecular Biosciences, 8, Article 679292. https://doi.org/10.3389/fmolb.2021.679292
Friel, J., Bombarely, A., Fornell, C.D., Luque, F., & Fernández-Ocaña, A.M. (2021). Comparative Analysis of Genotyping by Sequencing and Whole-Genome Sequencing Methods in Diversity Studies of Olea europaea L. Plants (Basel), 10(11), Article 2514. https://doi.org/10.3390/plants10112514
Garrido-Godino, A.I., Gupta, I., Gutiérrez-Santiago, F., Martínez-Padilla, A.B., Alekseenko, A., Steinmetz, L.M., Pérez-Ortín, J.E., Pelechano, V., & Navarro, F. (2021). Rpb4 and Puf3 imprint and post-transcriptionally control the stability of a common set of mRNAs in yeast. RNA Biology, 18(8), 1206-1220. https://doi.org/10.1080/15476286.2020.1839229
Garrido-Godino, A.I., Gutiérrez-Santiago, F., & Navarro, F. (2021). Biogenesis of RNA Polymerases in Yeast. Frontiers in Molecular Biosciences, 8, Article 669300. https://doi.org/10.3389/fmolb.2021.669300
Gómez-Gálvez, F.J., Pérez-Mohedano, D., de la Rosa-Navarro, R., & Belaj, A. (2021). High-throughput analysis of the canopy traits in the worldwide olive germplasm bank of Córdoba using very high-resolution imagery acquired from unmanned aerial vehicle (UAV). Scientia Horticulturae, 278, Article 109851. https://doi.org/10.1016/j.scienta.2020.109851
González-Jiménez, A., Campos, A., Navarro, F., Clemente-Blanco, A., & Calvo, O. (2021). Regulation of Eukaryotic RNAPs Activities by Phosphorylation. Frontiers in molecular biosciences, 8, Article 681865. https://doi.org/10.3389/fmolb.2021.681865
Hammami, S.B.M., León, L., Rapoport, H.F., & de la Rosa, R. (2021). A new approach for early selection of short juvenile period in olive progenies. Scientia Horticulturae, 281, Article 109993. https://doi.org/10.1016/j.scienta.2021.109993
Hernández, M.L., Sicardo, M.D., Belaj, A., & Martínez-Rivas, J.M. (2021). The Oleic/Linoleic Acid Ratio in Olive (Olea europaea L.) fruit mesocarp is mainly controlled by OeFAD2-2 and OeFAD2-5 Genes together with the different specificity of extraplastidial acyltransferase enzymes. Frontiers in Plant Science, 12, Article 653997. https://doi.org/10.3389/fpls.2021.653997
León, L., de la Rosa, R., & Arriaza, M. (2021). Prioritization of olive breeding objectives in Spain: Analysis of a producers and researchers survey. Spanish Journal of Agricultural Research, 19(4), Article e0701. https://doi.org/10.5424/sjar/2021194-18203
López-Bernal, A., Fernandes-Silva, A.A., Vega, V.A., Hidalgo, J.C., León, L., Testi, L., & Villalobos, F.J. (2021). A fruit growth approach to estimate oil content in olives. European Journal of Agronomy, 123, Article 126206. https://doi.org/10.1016/j.eja.2020.126206
Medina, G., Sanz, C., León, L., Pérez, A.G., & de la Rosa, R. (2021). Phenolic variability in fruit from the ‘Arbequina’ olive cultivar under Mediterranean and Subtropical climatic conditions. Grasas Y Aceites, 72(4), Article e438. https://doi.org/10.3989/gya.1002202
Ramírez-Tejero, J.A., Jiménez-Ruiz, J., Serrano, A., Belaj, A., León, L., de la Rosa, R., Mercado-Blanco, J., & Luque, F. (2021). Verticillium wilt resistant and susceptible olive cultivars express a very different basal set of genes in roots. BMC Genomics, 22, Article 229. https://doi.org/10.1186/s12864-021-07545-x
Serrano, A., de la Rosa, R., Sánchez-Ortiz, A., Cano, J., Pérez, A.G., Sanz, C., Arias-Calderón, R., Velasco, L., & León, L. (2021). Chemical components influencing oxidative stability and sensorial properties of extra virgin olive oil and effect of genotype and location on their expression. LWT-Food Science and Technology, 136, Article 110257. https://doi.org/10.1016/j.lwt.2020.110257
Serrano, A., Rodríguez-Jurado, D., Román, B., Bejarano-Alcázar, J., de la Rosa, R., & León, L. (2021). Verticillium Wilt Evaluation of Olive Breeding Selections Under Semi-Controlled Conditions. Plant Disease, 105(6), 1781-1790. https://doi.org/10.1094/PDIS-08-20-1829-RE
Torres-Sánchez, J., de la Rosa, R., León, L., Jiménez-Brenes, F.M., Kharrat, A., & López-Granados, F. (2021). Quantification of dwarfing effect of different rootstocks in ‘Picual’ olive cultivar using UAV-photogrammetry. Precision Agriculture, 23, 178–193. https://doi.org/10.1007/s11119-021-09832-9
2020
Belaj, A., de la Rosa, R., León, L., Gabaldón-Leal, C., Santos, C., Porras, R., de la Cruz-Blanco, M., & Lorite, I.J. (2020). Phenological diversity in a World Olive Germplasm Bank: Potential use for breeding programs and climate change studies. Spanish Journal of Agricultural Research, 18(1), Article e0701. https://doi.org/10.5424/sjar/2020181-15017
Cuevas-Bermúdez, A., Garrido-Godino, A.I., Gutiérrez-Santiago, F., & Navarro, F. (2020). A Yeast Chromatin-enriched Fractions Purification Approach, yChEFs, from Saccharomyces cerevisiae. Bio-protocol, 10(1), Article e3471. https://doi.org/10.21769/BioProtoc.3471
Díaz-Rueda, P., Franco-Navarro, J.D., Messora, R., Espartero, J., Rivero-Núñez, C.M., Aleza, P., Capote, N., Cantos, M., García-Fernández, J.L., de Cires, A., Belaj, A., León, L., Besnard, G., & Colmenero-Flores, J.M. (2020). SILVOLIVE, a Germplasm Collection of Wild Subspecies With High Genetic Variability as a Source of Rootstocks and Resistance Genes for Olive Breeding. Frontiers in plant science, 11, Article 629. https://doi.org/10.3389/fpls.2020.00629
Faize, M., Fumanal, B., Luque, F., Ramírez-Tejero, J.A., Zou, Z., Qiao, X., Faize, L., Gousset-Dupont, A., Roeckel-Drevet, P., Label, P., & Venisse, J-S. (2020). Genome wild analysis and molecular understanding of the aquaporin diversity in olive trees (Olea europaea L.). International Journal of Molecular Sciences, 21(11), Article 4183. https://doi.org/10.3390/ijms21114183
Jiménez-Ruiz, J., Ramírez-Tejero, J.A., Fernández-Pozo, N., Leyva-Pérez, M.O., Yan, H., de la Rosa, R., Belaj, A., Montes, E., Rodríguez-Ariza, M.O., Navarro, F., Barroso, J.B., Beuzón, C.R., Valpuesta, V., Bombarely, A., & Luque, F. (2020). Transposon Activation is a Major Driver in the Genome Evolution of Cultivated Olive Trees (Olea europaea L.). The Plant Genome, 13(1), Article e20010. https://doi.org/10.1002/tpg2.20010
León, L., Díaz-Rueda, P., Belaj, A., de la Rosa, R., Carrascosa, C., & Colmenero-Flores, J.M. (2020). Evaluation of early vigor traits in wild olive germplasm. Scientia Horticulturae, 264, Article 109157. https://doi.org/10.1016/j.scienta.2019.109157
López-Yerena, A., Ninot, A., Lozano-Castellón, J., Escribano-Ferrer, E., Romero-Aroca, A.J., Belaj, A., Vallverdú-Queralt, A., & Lamuela-Raventós, R.M. (2020). Conservation of Native Wild Ivory-White Olives from the MEDES Islands Natural Reserve to Maintain Virgin Olive Oil Diversity. Antioxidants (Basel), 9(10), Article 1009. https://doi.org/10.3390/antiox9101009
Mariotti, R., Belaj, A., de la Rosa, R., León, L., Brizioli, F., Baldoni, L., & Mousavi, S. (2020). EST–SNP Study of Olea europaea L. Uncovers Functional Polymorphisms between Cultivated and Wild Olives. Genes, 11(8), Article 916. https://doi.org/10.3390/genes11080916
Martínez-Fernández, V., Cuevas-Bermúdez, A., Gutiérrez-Santiago, F., Garrido-Godino, A.I., Rodríguez-Galán, O., Jordán-Pla, A., Lois, S., Triviño, J.C., de la Cruz, J., & Navarro, F. (2020). Prefoldin-like Bud27 influences the transcription of ribosomal components and ribosome biogenesis in Saccharomyces cerevisiae. RNA, 26, 1360-1379. https://doi.org/10.1261/rna.075507.120
Medina-Alonso, M.G., Navas, J.F., Cabezas, J.M., Weiland, C.M., Ríos-Mesa, D., Lorite, I.J., León, L., & de la Rosa, R. (2020). Differences on flowering phenology under Mediterranean and Subtropical environments for two representative olive cultivars. Environmental and Experimental Botany, 180, Article 104239. https://doi.org/10.1016/j.envexpbot.2020.104239
Navas-López, J.F., Cano, J., de la Rosa, R., Velasco, L., & León, L. (2020). Genotype by environment interaction for oil quality componentes in olive tree. European Journal of Agronomy, 119, Article 126115. https://doi.org/10.1016/j.eja.2020.126115
Ramírez-Tejero, J.A., Gómez-Lama Cabanás, C., Valverde-Corredor, A., Mercado-Blanco, J., & Luque, F. (2020). Epigenetics regulation of Verticillium dahliae virulence: Does DNA methylation level play a role? International Journal of Molecular Science, 21(15), Article 5197. https://doi.org/10.3390/ijms21155197
Ramírez-Tejero, J.A., Jiménez-Ruiz, J., Leyva-Pérez, M.O., Barroso, J.B., & Luque F. (2020). Gene expression pattern in olive tree organs (Olea europaea L.). Genes, 11(5), Article 544. https://doi.org/10.3390/genes11050544
Sanz, C., Belaj, A., Tortosa, J.L., & Pérez, A.G. (2020). Comparative study of the content of phenolic compounds in olive fruits and leaves for posible use in breeding programs for the functional selection of olive cultivars. Acta Horticulturae, 1282, 11-18. https://doi.org/10.17660/ActaHortic.2020.1282.3
Serrano, A., de la Rosa, R., Sánchez-Ortiz, A., & León, L. (2020). Genetic and environmental effect on volatile composition of extra virgin olive oil. European Journal of Lipid Science and Technology, 122(12), Article 2000162. https://doi.org/10.1002/ejlt.202000162
Serrano, A., León, L., Belaj, A., & Román, B. (2020). Nucleotide diversity analysis of candidate genes for Verticillium wilt resistance in olive. Scientia Horticulturae, 274, Article 109653. https://doi.org/10.1016/j.scienta.2020.109653
2019
Begley, V., Corzo, D., Jordán-Pla, A., Cuevas-Bermúdez, A., de Miguel-Jiménez, L., Pérez-Aguado, D., Machuca-Ostos, M., Navarro, F., Chávez, M.J., Pérez-Ortín, J.E., & Chávez, S. (2019). The mRNA degradation factor Xrn1 regulates transcription elongation in parallel to Ccr4. Nucleic acids research, 47(18), 9524–9541. https://doi.org/10.1093/nar/gkz660
Cuevas-Bermúdez, A., Garrido-Godino, A.I., & Navarro, F. (2019). A novel yeast chromatin-enriched fractions purification approach, yChEFs, for the chromatin-associated protein analysis used for chromatin-associated and RNA-dependent chromatin-associated proteome studies from Saccharomyces cerevisiae. Gene Reports, 16, Article 100450. https://doi.org/10.1016/j.genrep.2019.100450
Fernández-González, A.J., Villadas, P.J., Gómez-Lama Cabanás, C., Valverde-Corredor, A., Belaj, A., Mercado-Blanco, J., & Fernández-López, M. (2019). Defining the root endosphere and rhizosphere microbiomes from the World Olive Germplasm Collection. Scientific reports, 9(1), Article 20423. https://doi.org/10.1038/s41598-019-56977-9
Jiménez-Ruiz, J., Leyva-Pérez, M.O., Gómez-Lama Cabanás, C., Barroso-Albarracín, J.B., Luque, F., & Mercado-Blanco, J. (2019). The transcriptome of Verticillium dahliae responds differentially depending on the disease susceptibility level of the olive (Olea europaea L.) cultivar. Genes, 10(4), Article 251. https://doi.org/10.3390/genes10040251
Martín-García, B., Verardo, V., León, L., de la Rosa, R., Arráez-Román, D., Segura-Carretero, A., & Gómez-Caravaca, A.M. (2019). GC-QTOF-MS as valuable tool to evaluate the influence of cultivar and sample time on olive leaves triterpenic components. Food Research International, 115, 219-226. https://doi.org/10.1016/j.foodres.2018.08.085
Mousavi, S., de la Rosa, R., Moukhli, A., El Riachy, M., Mariotti, R., Torres, M., Pierantozzi, P., Stanzione, V., Mastio, V., Zaher, H., El Antari, A., Ayoub, S., Dandachi, F., Youssef, H., Aggelou, N., Contreras, C., Maestri, D., Belaj, A., Bufacchi, M., Baldoni, L., & León, L. (2019). Plasticity of fruit and oil traits in olive among different environments. Scientific reports, 9(1), Article 16968. https://doi.org/10.1038/s41598-019-53169-3
Navas-Lopez, J.F., León, L., Rapoport, H.F., Moreno-Alías, I., Lorite, I.J., & de la Rosa, R. (2019). Genotype, environment and their interaction effects on olive tree flowering phenology and flower quality. Euphytica, 215, Article 184. https://doi.org/10.1007/s10681-019-2503-5
Navas-Lopez, J.F., León, L., Trentacoste, E.R., & de la Rosa, R. (2019). Multi-environment evaluation of oil accumulation pattern parameters in olive. Plant physiology and biochemistry:PPB, 139, 485–494. https://doi.org/10.1016/j.plaphy.2019.04.016
Palomares-Rius, J.E., Belaj, A., León, L., de la Rosa, R., Rapoport, H.F., & Castillo, P. (2019). Evaluation of the Phytopathological Reaction of Wild and Cultivated Olives as a Means of Finding Promising New Sources of Genetic Diversity for Resistance to Root-Knot Nematodes. Plant disease, 103(10), 2559–2568. https://doi.org/10.1094/PDIS-02-19-0322-RE
Pérez, A.G., León, L., Pascual, M., de la Rosa, R., Belaj, A., & Sanz, C. (2019). Analysis of Olive (Olea Europaea L.) Genetic Resources in Relation to the Content of Vitamin E in Virgin Olive Oil. Antioxidants (Basel, Switzerland), 8(8), Article 242. https://doi.org/10.3390/antiox8080242
Sarwar, M.B., Ahmad, Z., Rashid, B., Hassan, S., Gregersen, P.L., Leyva, M.O., Nagy, I., Asp, T., & Husnain, T. (2019). De novo assembly of Agave sisalana transcriptome in response to drought stress provides insight into the tolerance mechanisms. Scientific reports, 9(1), Article 396. https://doi.org/10.1038/s41598-018-35891-6
2018
Belaj, A., de la Rosa, R., Lorite, I.J., Mariotti, R., Cultrera, N.G.M., Beuzón, C.R., González-Plaza, J.J., Muñoz-Mérida, A., Trelles, O., & Baldoni, L. (2018). Usefulness of a New Large Set of High Throughput EST-SNP Markers as a Tool for Olive Germplasm Collection Management. Frontiers in plant science, 9, Article 1320. https://doi.org/10.3389/fpls.2018.01320
Belaj, A., León, L., Pérez Rubio, A.G., de la Rosa, R., & Sanz, C. (2018). Assessment of olive diversity for metabolites associated with the nutritional and sensory quality of virgin olive oil. Acta Horticulturae, 1199, 517-522. https://doi.org/10.17660/ActaHortic.2018.1199.82
García-Vico, L., Belaj, A., León, L., de la Rosa, R., Sanz, C., & Pérez, A.G. (2018). A survey of ethanol content in virgin olive oil. Food Control, 91, 248-253. https://doi.org/10.1016/j.foodcont.2018.04.006
Jiménez-Ruiz, J., Leyva-Pérez, M.O., Vidoy-Mercado, I., Barceló-Muñoz, A., & Luque, F. (2018). Transcriptomic time-series analysis of early development in olive from germinated embryos to juvenile tree. BMC genomics, 19(1), Article 824. https://doi.org/10.1186/s12864-018-5232-6
León, L., de la Rosa, R., Velasco, L., & Belaj, A. (2018). Using Wild Olives in Breeding Programs: Implications on Oil Quality Composition. Frontiers in plant science, 9, Article 232. https://doi.org/10.3389/fpls.2018.00232
Leyva-Pérez, M.O., Jiménez-Ruiz, J., Gómez-Lama Cabanás, C., Valverde-Corredor, A., Barroso, J.B., Luque, F., & Mercado-Blanco, J. (2018). Tolerance of olive (Olea europaea) cv Frantoio to Verticillium dahliae relies on both basal and pathogen-induced differential transcriptomic responses. The New phytologist, 217(2), 671–686. https://doi.org/10.1111/nph.14833
Lorite, I.J., Gabaldón-Leal, C., Ruiz-Ramos, M., Belaj, A., de la Rosa, R., León, L., & Santos, C. (2018). Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agricultural Water Management, 204, 247-261. https://doi.org/10.1016/j.agwat.2018.04.008
Martínez-Fernández, V., Garrido-Godino, A.I., Cuevas-Bermúdez, A., & Navarro, F. (2018). The Yeast Prefoldin Bud27. Advances in experimental medicine and biology, 1106, 109–118. https://doi.org/10.1007/978-3-030-00737-9_8
Martínez-Fernández, V., Garrido-Godino, A.I., Mirón-García, M.C., Begley, V., Fernández-Pévida, A., de la Cruz, J., Chávez, S., & Navarro, F. (2018). Rpb5 modulates the RNA polymerase II transition from initiation to elongation by influencing Spt5 association and backtracking. Biochimica et biophysica Acta-Gene regulatory mechanisms, 1861(1), 1–13. https://doi.org/10.1016/j.bbagrm.2017.11.002
Martínez-Fernández, V., & Navarro, F. (2018). Rpb5, a subunit shared by eukaryotic RNA polymerases, cooperates with prefoldin-like Bud27/URI. AIMS Genetics, 5(1), 63-74. https://doi.org/10.3934/genet.2018.1.63
Navas-López, J.F., León, L., Rapoport, H.F., Moreno-Alías, I., Medina, M.G., Santos, C., Porras, R., Lorite, I.J., & de la Rosa, R. (2018). Flowering phenology and flower quality of cultivars ‘Arbequina’, ‘Koroneiki’ and ‘Picual’ in different environments of southern Spain. Acta Horticulturae, 1229, 257-262. https://doi.org/10.17660/ActaHortic.2018.1229.39
Ninot, A., Howad, W., Aranzana, M.J., Senar, R., Romero, A., Mariotti, R., Baldoni, L., & Belaj, A. (2018). Survey of over 4,500 monumental olive trees preserved on-farm in the northeast Iberian Peninsula, their genotyping and characterization. Scientia Horticulturae, 231, 253-264. https://doi.org/10.1016/j.scienta.2017.11.025
Rallo, L., Barranco, D., de la Rosa, R., & León, L. (2018). New olive cultivars and selections in Spain: results after 25 years of breeding. Acta Horticulturae, 1199, 21-26. https://doi.org/10.17660/ActaHortic.2018.1199.4
Sanz, C., Belaj, A., Sánchez-Ortiz, A., & Pérez, A.G. (2018). Natural variation of volatile compounds in virgin olive oil analyzed by HS-SPME/GC-MS-FID. Separations, 5(2), Article 24. https://doi.org/10.3390/separations5020024
Sanz, C., & de la Rosa, R. (2018). Fruit phenolic profiling: A new selection criterion in olive breeding programs. Frontiers in plant science, 9, Article 241. https://doi.org/10.3389/fpls.2018.00241
Genomic and transcriptomic approaches to the identification of key molecular markers and gene variants on phenol content and composition in olive
Entidad Financiadora: Concesión de ayudas a Proyecto de I+D+i en el marco de los programas estatales de generación de conocimiento y fortalecimiento científico y tecnológico del sistema de I+D+i y de I+D+i orientada a los retos de la sociedad. Convocatoria 2020.Ministerio de Ciencia e Innovación
Referencia: PID2020-115853RR-C33
Investigador principal: Francisco Luque Vázquez
Año de inicio: 2021
Presupuesto: 160.000,00 €
Homeostasia del RNA en células eucariotas: control de la transcripción global durante el ciclo celular y papel de la Prefoldina-like BUD27
Entidad Financiadora: Concesión de ayudas a Proyecto de I+D+i en el marco de los programas estatales de generación de conocimiento y fortalecimiento científico y tecnológico del sistema de I+D+i y de I+D+i orientada a los retos de la sociedad. Convocatoria 2020.Ministerio de Ciencia e Innovación
Referencia: PID2020-112853GB-C33
Investigador principal: Francisco Navarro Gómez
Año de inicio: 2021
Presupuesto: 120.000,00 €
Contribución de la cochaperona prefoldin-like Bud27 a la formación de los complejos transcripcionales de la RNA polimerasa III, a su actividad transcripcional y a la composición proteica de la cromatina en Saccharomyces cerevisiae
Entidad Financiadora: Ayudas a la I+D+i, en el ámbito del Plan Andaluz de Investigación, Desarrollo e Innovación, PAIDI
Referencia: PY20_00792
Investigador principal: Francisco Navarro Gómez
Año de inicio: 2021
Presupuesto: 60.000,00 €
Influencia de la prefoldina-like URI/Bud27 en la expresión y en los niveles intracelulares de tRNA y su correlación con el cáncer
Entidad Financiadora: Junta de Andalucía-Universidad de Jaén (Proyecto FEDER-UJA)
Referencia: 1260360
Investigador principal: Francisco Navarro Gómez
Año de inicio: 2020
Presupuesto: 108.000,00 €
Olive genome sequencing
Determine and identify all genes and their possible functions
Comparison between varieties
Identification of genes with commercial interest
Verticillium wilt diagnostic kit
unit members

Francisco Luque Vázquez
Head of Unit

Francisco Luque Vázquez
Address: Building B3, office 346
ORCID: 0000-0003-1354-3533
Scopus Author ID: 35230584100
Researcher ID: E-8400-2016
- Phone:953212527
- Email:fjluque@ujaen.es
Francisco
Luque Vázquez
Head of Unit

Francisco Navarro Gómez
Senior Researcher

Francisco Navarro Gómez
Address: Building B3, office 355
ORCID: 0000-0002-8515-0547
Scopus Author ID: 56679242900
Researcher ID: K-7586-2014
- Phone:953212771
- Email:fngomez@ujaen.es
Francisco
Navarro Gómez
Senior Researcher

María de la O Leyva-Pérez
External Collaborator Researcher

María de la O Leyva-Pérez
Address: TEAGASC (Dublin, Ireland)
ORCID: 0000-0001-5416-7584
Scopus Author ID: 10040632200
Researcher ID: GFP-5423-2022
María de la O
Leyva-Pérez
External Collaborator Researcher

Martín Moret Sánchez
Researcher

Martín Moret Sánchez
Scopus Author ID: 58045315900
Researcher ID: DGJ-4614-2022
- Phone:953213097
- Email:mmoret@ujaen.es
Martín
Moret Sánchez
Researcher

Alicia Serrano Gómez
Researcher

Alicia Serrano Gómez
ORCID: 0000-0002-6936-3913
Scopus Author ID: 57208185955
Researcher ID: DQJ-2226-2022
- Phone:953213097
- Email:asg00144@ext.ujaen.es
Alicia
Serrano Gómez
Researcher

Raúl de la Rosa Navarro
External Collaborator Researcher

Raúl de la Rosa Navarro
Address: ‘IFAPA, Alameda del Obispo, Córdoba’
ORCID: 0000-0002-0752-9607
Scopus Author ID: 56250090000
Researcher ID: B-5755-2008
- Phone:953632738
- Email:raul.rosa@juntadeandalucia.es
Raúl
de la Rosa Navarro
External Collaborator Researcher

Lorenzo León Moreno
External Collaborator Researcher

Lorenzo León Moreno
Address: ‘IFAPA, Alameda del Obispo, Córdoba’
ORCID: 0000-0002-5664-3393
Scopus Author ID: 7101666611
Researcher ID: DTZ-6970-2022
- Phone:953632697
- Email:lorenzo.leon@juntadeandalucia.es
Lorenzo
León Moreno
External Collaborator Researcher

Angjelina Belaj
External Collaborator Researcher

Angjelina Belaj
Address: ‘IFAPA, Alameda del Obispo, Córdoba’
ORCID: 0000-0002-4526-0979
Scopus Author ID: 6603331898
Researcher ID: AAN-7305-2021
- Phone:953632703
- Email:angjelina.belaj@juntadeandalucia.es
Angjelina
Belaj
External Collaborator Researcher
research units
The INUO is structured into Research Units that bring together an amalgamation of researchers, which although they may belong to different subareas of knowledge, the name of each Unit corresponds to the main lines of research characteristic of the Institute and are as follows: