Research Units
Genomics and Breeding Unit

genomics and breeding unit

PAIDI Group in Unit:


OliveTreeDB genomics website

OliveAtlas transcriptomics website

This unit develops studies related to the genome of the olive tree and its applications. Specifically, the main lines of research are:

  1. Olive tree genomics, with the main objective of assembling genomes of diverse varieties with high precision.
  2. Genetic variability of the olive tree and its applicability, such as obtaining genetic markers to achieve genetic improvements in the olive tree.
  3. Transcriptomic analysis applied to stress response, with special attention to resistance/susceptibility to verticillium wilt in olive trees.
  4. Transcriptomic analysis applied to development processes.



Gómez-Gálvez, F.J., Ninot, A., Cano Rodríguez, J., Paz Compañ, S., Ugarte Andreva, J., García Rubio, J.A., Pinilla Aragón, I., Viñuales-Andreu, J., Casanova Gascón, J., Šatovic, Z., Lorite, I.J., de la Rosa, R., & Belaj, A. (in press). New insights in the spanish gene pool of olive (Olea europaea L.) preserved ex situ and in situ based on high-throughput molecular markers. Frontiers in Plant Science, 14.

Serrano, A., Moret, M., Fernández-Parras, I., Bombarely, A., Luque, F., & Navarro, F. (2024). RNA polymerases IV and V are involved in olive fruit development. Genes, 15, Article 1.


Bombarely, A., Friel, J., & Luque, F. (2023). Olive genoma structure, evolution and domestication. In The Olive-Botany and production, eds. L. Baldoni, T. Caruso and F. Famini, pp.: 121-130.

Bullones, A., Castro, A.J., Lima-Cabello, E., Alché, J.D., Luque, F., Claros, M.G., & Fernández-Pozo, N. (2023). OliveAtlas: A gene expression atlas tool for Olea europaea. Plants, 12(6), Article 1274.

Fernández Fernández, J., Martín-Villanueva, S., Pérez-Fernández, J., & de la Cruz, J. (2023). The Role of Ribosomal proteins eL15 and eL36 in the Early Steps of Yeast 60S ribosomal subunit assembly. Journal of Molecular Biology, 435(24), Article 168321.

Gutiérrez-Santiago, F., & Navarro, F. (2023). Transcription by the Three RNA Polymerases under the Control of the TOR Signaling Pathway in Saccharomyces cerevisiae. Biomolecules, 13(4), Article 642.

Hernández, M.L., Muñoz-Ocaña, C., Posada, P., Sicardo, M.D., Hornero-Méndez, D., Gómez-Coca, R.B., Belaj, A., Moreda, W., & Martínez-Rivas, J.M. (2023). Functional characterization of four olive squalene synthases with respect to the squalene content of the Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 71(42), 15701-15712.

Mariotti, R., Belaj, A., de la Rosa, R., Muleo, R., Cirilli, M., Forgione, I., Valery, M.C., & Mousavi, S. (2023). Genealogical tracing of Olea europaea species and pedigree relationships of var. europaea using chloroplast and nuclear markers. BMC Plant Biology, 23(1), Article 452.

Medina-Alonso, M.G., Cabezas, J.M., Ríos-Mesa, D., Lorite, I.J., León, L., & de la Rosa, R. (2023). Flowering phenology of olive cultivars in two climate zones with contrasting temperatures (Subtropical and Mediterranean). Agriculture-Basel, 13(7), Article 1312.

Serrano, A., Rodríguez-Jurado, D., Ramírez-Tejero, J.A., Luque, F., López-Escudero, F.J., Belaj, A., Román, B., & León, L. (2023). Response to Verticillium dahliae infection in a genetically diverse set of olive cultivars. Scientia Horticulturae, 316, Article 112008.

Serrano, A., Wunsch, A., Sabety, J., Van Zoeren, J., Basedow, M., Miranda Sazo, M., Fuchs, M., & Khan, A. (2023). The Comparative root system architecture of declining and non-declining trees in two apple orchards in New York. Plants, 12(14), Article 2644.

Serrano García, I., Olmo-García, L., Monago-Maraña, O., de Alba, I.M.C., León, L., de la Rosa, R., Serrano, A., Gómez-Caravaca, A.M., & Carrasco-Pancorbo, A. (2023). Characterization of the Metabolic Profile of Olive Tissues (Roots, Stems and Leaves): Relationship with Cultivars’ Resistance/Susceptibility to the soil fungus Verticillium dahlie. Antioxidants, 12(12), Article 2120.

Yilmaz-Düzyaman, H., Medina-Alonso, M.G., Sanz, C., Pérez, A.G., de la Rosa, R., & León, L. (2023). Influence of genotype and environment on fruit phenolic composition of olive. Horticulturae, 9(10), Article 1087.


Belaj, A., Ninot, A., Gómez-Gálvez, F.J., El Riachy, M., Gurbuz-Veral, M., Torres, M., Lazaj, A., Klepo, T., Paz, S., Ugarte, J., Baldoni, L., Lorite, I.J., Šatović, Z., & de la Rosa, R. (2022). Utility of EST-SNP Markers for Improving Management and Use of Olive Genetic Resources: A Case Study at the Worldwide Olive Germplasm Bank of Córdoba. Plants, 11, Article 921.

Garrido-Godino, A.I., Cuevas-Bermúdez, A., Gutiérrez-Santiago, F., Mota-Trujillo, M.C., & Navarro, F. (2022). The Association of Rpb4 with RNA Polymerase II Depends on CTD Ser5P Phosphatase Rtr1 and Influences mRNA Decay in Saccharomyces cerevisiae. International Journal of Molecular Sciences, 23(4), Article 2002.

Lorite, I.J., Cabeza, J.M., Ruiz-Ramos, M., de la Rosa, R., Soriano, M.A., León, L., Santos, C., & Gabaldón-Leal, C. (2022). Enhancing the sustainability of Mediterranean olive groves through adaptation measures to climate change using modelling and response surfaces. Agricultural and Forest Meteorology, 313, Article 108742.

Moret, M., Ramírez-Tejero, J.A., Serrano, A., Ramírez-Yera, E., Cueva-López, M.D., Belaj, A., León, L., de la Rosa, R., Bombarely, A., & Luque, F. (2022). Identification of Genetic Markers and Genes Putatively Involved in Determining Olive Fruit Weight. Plants (Basel), 12(1), Article 155.

Rapoport, H.F., Moreno-Alías, I., de la Rosa-Peinazo, M.Á., Frija, A., de la Rosa, R., & León, L. (2022). Floral Quality Characterization in Olive Progenies from Reciprocal Crosses. Plants, 11, Article 1285.

Serrano-García, I., Olmo-García, L., Polo-Megías, D., Serrano, A., León, L., de la Rosa, R., Gómez-Caravaca, A.M., & Carrasco-Pancorbo, A. (2022). Fruit Phenolic and Triterpenic Composition of Progenies of Olea europaea subsp. cuspidata, an Interesting Phytochemical Source to Be Included in Olive Breeding Programs. Plants, 11, Article 1791.

Yılmaz-Düzyaman, H., de la Rosa, R., & León, L. (2022). Seedling Selection in Olive Breeding Progenies. Plants, 11, Article 1195.


Begley, V., Jordán-Pla, A., Peñate, X., Garrido-Godino, A.I., Challal, D., Cuevas-Bermúdez, A., Mitjavila, A., Barucco, M., Gutiérrez, G., Singh, A., Alepuz, P., Navarro, F., Libri, D., Pérez-Ortín, J.E., & Chávez, S. (2021). Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configuration. RNA biology, 18(9), 1310–1323.

Calvo, O., Ansari, A., & Navarro, F. (2021). Editorial: The Lesser Known World of RNA Polymerases. Frontiers in Molecular Biosciences, 8, Article 811413.

Fernández-González, A.J., Ramírez-Tejero, J.A., Nevado-Berzosa, M.P., Luque, F., Fernández-López, M., & Mercado-Blanco, J. (2021). Coupling the endophytic microbiome with the host transcriptome in olive roots. Computational and Structural Biotechnology Journal, 19, 4777-4789.

Fernández-Parras, I., Ramírez-Tejero, J.A., Luque, F., & Navarro, F. (2021). Several Isoforms for Each Subunit Shared by RNA Polymerases are Differentially Expressed in the Cultivated Olive Tree (Olea europaea L.). Frontiers in Molecular Biosciences, 8, Article 679292.

Friel, J., Bombarely, A., Fornell, C.D., Luque, F., & Fernández-Ocaña, A.M. (2021). Comparative Analysis of Genotyping by Sequencing and Whole-Genome Sequencing Methods in Diversity Studies of Olea europaea L. Plants (Basel), 10(11), Article 2514.

Garrido-Godino, A.I., Gupta, I., Gutiérrez-Santiago, F., Martínez-Padilla, A.B., Alekseenko, A., Steinmetz, L.M., Pérez-Ortín, J.E., Pelechano, V., & Navarro, F. (2021). Rpb4 and Puf3 imprint and post-transcriptionally control the stability of a common set of mRNAs in yeast. RNA Biology, 18(8), 1206-1220.

Garrido-Godino, A.I., Gutiérrez-Santiago, F., & Navarro, F. (2021). Biogenesis of RNA Polymerases in Yeast. Frontiers in Molecular Biosciences, 8, Article 669300.

Gómez-Gálvez, F.J., Pérez-Mohedano, D., de la Rosa-Navarro, R., & Belaj, A. (2021). High-throughput analysis of the canopy traits in the worldwide olive germplasm bank of Córdoba using very high-resolution imagery acquired from unmanned aerial vehicle (UAV). Scientia Horticulturae, 278, Article 109851.

González-Jiménez, A., Campos, A., Navarro, F., Clemente-Blanco, A., & Calvo, O. (2021). Regulation of Eukaryotic RNAPs Activities by Phosphorylation. Frontiers in molecular biosciences, 8, Article 681865.

Hammami, S.B.M., León, L., Rapoport, H.F., & de la Rosa, R. (2021). A new approach for early selection of short juvenile period in olive progenies. Scientia Horticulturae, 281, Article 109993.

Hernández, M.L., Sicardo, M.D., Belaj, A., & Martínez-Rivas, J.M. (2021). The Oleic/Linoleic Acid Ratio in Olive (Olea europaea L.) fruit mesocarp is mainly controlled by OeFAD2-2 and OeFAD2-5 Genes together with the different specificity of extraplastidial acyltransferase enzymes. Frontiers in Plant Science, 12, Article 653997.

León, L., de la Rosa, R., & Arriaza, M. (2021). Prioritization of olive breeding objectives in Spain: Analysis of a producers and researchers survey. Spanish Journal of Agricultural Research, 19(4), Article e0701.

López-Bernal, A., Fernandes-Silva, A.A., Vega, V.A., Hidalgo, J.C., León, L., Testi, L., & Villalobos, F.J. (2021). A fruit growth approach to estimate oil content in olives. European Journal of Agronomy, 123, Article 126206.

Medina, G., Sanz, C., León, L., Pérez, A.G., & de la Rosa, R. (2021). Phenolic variability in fruit from the ‘Arbequina’ olive cultivar under Mediterranean and Subtropical climatic conditions. Grasas Y Aceites, 72(4), Article e438.

Ramírez-Tejero, J.A., Jiménez-Ruiz, J., Serrano, A., Belaj, A., León, L., de la Rosa, R., Mercado-Blanco, J., & Luque, F. (2021). Verticillium wilt resistant and susceptible olive cultivars express a very different basal set of genes in roots. BMC Genomics, 22, Article 229.

Serrano, A., de la Rosa, R., Sánchez-Ortiz, A., Cano, J., Pérez, A.G., Sanz, C., Arias-Calderón, R., Velasco, L., & León, L. (2021). Chemical components influencing oxidative stability and sensorial properties of extra virgin olive oil and effect of genotype and location on their expression. LWT-Food Science and Technology, 136, Article 110257.

Serrano, A., Rodríguez-Jurado, D., Román, B., Bejarano-Alcázar, J., de la Rosa, R., & León, L. (2021). Verticillium Wilt Evaluation of Olive Breeding Selections Under Semi-Controlled Conditions. Plant Disease, 105(6), 1781-1790.

Torres-Sánchez, J., de la Rosa, R., León, L., Jiménez-Brenes, F.M., Kharrat, A., & López-Granados, F. (2021). Quantification of dwarfing effect of different rootstocks in ‘Picual’ olive cultivar using UAV-photogrammetry. Precision Agriculture, 23, 178–193.


Belaj, A., de la Rosa, R., León, L., Gabaldón-Leal, C., Santos, C., Porras, R., de la Cruz-Blanco, M., & Lorite, I.J. (2020). Phenological diversity in a World Olive Germplasm Bank: Potential use for breeding programs and climate change studies. Spanish Journal of Agricultural Research, 18(1), Article e0701.

Cuevas-Bermúdez, A., Garrido-Godino, A.I., Gutiérrez-Santiago, F., & Navarro, F. (2020). A Yeast Chromatin-enriched Fractions Purification Approach, yChEFs, from Saccharomyces cerevisiae. Bio-protocol, 10(1), Article e3471.

Díaz-Rueda, P., Franco-Navarro, J.D., Messora, R., Espartero, J., Rivero-Núñez, C.M., Aleza, P., Capote, N., Cantos, M., García-Fernández, J.L., de Cires, A., Belaj, A., León, L., Besnard, G., & Colmenero-Flores, J.M. (2020). SILVOLIVE, a Germplasm Collection of Wild Subspecies With High Genetic Variability as a Source of Rootstocks and Resistance Genes for Olive Breeding. Frontiers in plant science, 11, Article 629.

Faize, M., Fumanal, B., Luque, F., Ramírez-Tejero, J.A., Zou, Z., Qiao, X., Faize, L., Gousset-Dupont, A., Roeckel-Drevet, P., Label, P., & Venisse, J-S. (2020). Genome wild analysis and molecular understanding of the aquaporin diversity in olive trees (Olea europaea L.). International Journal of Molecular Sciences, 21(11), Article 4183.

Jiménez-Ruiz, J., Ramírez-Tejero, J.A., Fernández-Pozo, N., Leyva-Pérez, M.O., Yan, H., de la Rosa, R., Belaj, A., Montes, E., Rodríguez-Ariza, M.O., Navarro, F., Barroso, J.B., Beuzón, C.R., Valpuesta, V., Bombarely, A., & Luque, F. (2020). Transposon Activation is a Major Driver in the Genome Evolution of Cultivated Olive Trees (Olea europaea L.). The Plant Genome, 13(1), Article e20010.

León, L., Díaz-Rueda, P., Belaj, A., de la Rosa, R., Carrascosa, C., & Colmenero-Flores, J.M. (2020). Evaluation of early vigor traits in wild olive germplasm. Scientia Horticulturae, 264, Article 109157.

López-Yerena, A., Ninot, A., Lozano-Castellón, J., Escribano-Ferrer, E., Romero-Aroca, A.J., Belaj, A., Vallverdú-Queralt, A., & Lamuela-Raventós, R.M. (2020). Conservation of Native Wild Ivory-White Olives from the MEDES Islands Natural Reserve to Maintain Virgin Olive Oil Diversity. Antioxidants (Basel), 9(10), Article 1009.

Mariotti, R., Belaj, A., de la Rosa, R., León, L., Brizioli, F., Baldoni, L., & Mousavi, S. (2020). EST–SNP Study of Olea europaea L. Uncovers Functional Polymorphisms between Cultivated and Wild Olives. Genes, 11(8), Article 916.

Martínez-Fernández, V., Cuevas-Bermúdez, A., Gutiérrez-Santiago, F., Garrido-Godino, A.I., Rodríguez-Galán, O., Jordán-Pla, A., Lois, S., Triviño, J.C., de la Cruz, J., & Navarro, F. (2020). Prefoldin-like Bud27 influences the transcription of ribosomal components and ribosome biogenesis in Saccharomyces cerevisiae. RNA, 26, 1360-1379.

Medina-Alonso, M.G., Navas, J.F., Cabezas, J.M., Weiland, C.M., Ríos-Mesa, D., Lorite, I.J., León, L., & de la Rosa, R. (2020). Differences on flowering phenology under Mediterranean and Subtropical environments for two representative olive cultivars. Environmental and Experimental Botany, 180, Article 104239.

Navas-López, J.F., Cano, J., de la Rosa, R., Velasco, L., & León, L. (2020). Genotype by environment interaction for oil quality componentes in olive tree. European Journal of Agronomy, 119, Article 126115.

Ramírez-Tejero, J.A., Gómez-Lama Cabanás, C., Valverde-Corredor, A., Mercado-Blanco, J., & Luque, F. (2020). Epigenetics regulation of Verticillium dahliae virulence: Does DNA methylation level play a role? International Journal of Molecular Science, 21(15), Article 5197.

Ramírez-Tejero, J.A., Jiménez-Ruiz, J., Leyva-Pérez, M.O., Barroso, J.B., & Luque F. (2020). Gene expression pattern in olive tree organs (Olea europaea L.). Genes, 11(5), Article 544.

Sanz, C., Belaj, A., Tortosa, J.L., & Pérez, A.G. (2020). Comparative study of the content of phenolic compounds in olive fruits and leaves for posible use in breeding programs for the functional selection of olive cultivars. Acta Horticulturae, 1282, 11-18.

Serrano, A., de la Rosa, R., Sánchez-Ortiz, A., & León, L. (2020). Genetic and environmental effect on volatile composition of extra virgin olive oil. European Journal of Lipid Science and Technology, 122(12), Article 2000162.

Serrano, A., León, L., Belaj, A., & Román, B. (2020). Nucleotide diversity analysis of candidate genes for Verticillium wilt resistance in olive. Scientia Horticulturae, 274, Article 109653.


Begley, V., Corzo, D., Jordán-Pla, A., Cuevas-Bermúdez, A., de Miguel-Jiménez, L., Pérez-Aguado, D., Machuca-Ostos, M., Navarro, F., Chávez, M.J., Pérez-Ortín, J.E., & Chávez, S. (2019). The mRNA degradation factor Xrn1 regulates transcription elongation in parallel to Ccr4. Nucleic acids research, 47(18), 9524–9541.

Cuevas-Bermúdez, A., Garrido-Godino, A.I., & Navarro, F. (2019). A novel yeast chromatin-enriched fractions purification approach, yChEFs, for the chromatin-associated protein analysis used for chromatin-associated and RNA-dependent chromatin-associated proteome studies from Saccharomyces cerevisiae. Gene Reports, 16, Article 100450.

Fernández-González, A.J., Villadas, P.J., Gómez-Lama Cabanás, C., Valverde-Corredor, A., Belaj, A., Mercado-Blanco, J., & Fernández-López, M. (2019). Defining the root endosphere and rhizosphere microbiomes from the World Olive Germplasm Collection. Scientific reports, 9(1), Article 20423.

Jiménez-Ruiz, J., Leyva-Pérez, M.O., Gómez-Lama Cabanás, C., Barroso-Albarracín, J.B., Luque, F., & Mercado-Blanco, J. (2019). The transcriptome of Verticillium dahliae responds differentially depending on the disease susceptibility level of the olive (Olea europaea L.) cultivar. Genes, 10(4), Article 251.

Martín-García, B., Verardo, V., León, L., de la Rosa, R., Arráez-Román, D., Segura-Carretero, A., & Gómez-Caravaca, A.M. (2019). GC-QTOF-MS as valuable tool to evaluate the influence of cultivar and sample time on olive leaves triterpenic components. Food Research International, 115, 219-226.

Mousavi, S., de la Rosa, R., Moukhli, A., El Riachy, M., Mariotti, R., Torres, M., Pierantozzi, P., Stanzione, V., Mastio, V., Zaher, H., El Antari, A., Ayoub, S., Dandachi, F., Youssef, H., Aggelou, N., Contreras, C., Maestri, D., Belaj, A., Bufacchi, M., Baldoni, L., & León, L. (2019). Plasticity of fruit and oil traits in olive among different environments. Scientific reports, 9(1), Article 16968.

Navas-Lopez, J.F., León, L., Rapoport, H.F., Moreno-Alías, I., Lorite, I.J., & de la Rosa, R. (2019). Genotype, environment and their interaction effects on olive tree flowering phenology and flower quality. Euphytica, 215, Article 184.

Navas-Lopez, J.F., León, L., Trentacoste, E.R., & de la Rosa, R. (2019). Multi-environment evaluation of oil accumulation pattern parameters in olive. Plant physiology and biochemistry:PPB, 139, 485–494.

Palomares-Rius, J.E., Belaj, A., León, L., de la Rosa, R., Rapoport, H.F., & Castillo, P. (2019). Evaluation of the Phytopathological Reaction of Wild and Cultivated Olives as a Means of Finding Promising New Sources of Genetic Diversity for Resistance to Root-Knot Nematodes. Plant disease, 103(10), 2559–2568.

Pérez, A.G., León, L., Pascual, M., de la Rosa, R., Belaj, A., & Sanz, C. (2019). Analysis of Olive (Olea Europaea L.) Genetic Resources in Relation to the Content of Vitamin E in Virgin Olive Oil. Antioxidants (Basel, Switzerland), 8(8), Article 242.

Sarwar, M.B., Ahmad, Z., Rashid, B., Hassan, S., Gregersen, P.L., Leyva, M.O., Nagy, I., Asp, T., & Husnain, T. (2019). De novo assembly of Agave sisalana transcriptome in response to drought stress provides insight into the tolerance mechanisms. Scientific reports, 9(1), Article 396.


Belaj, A., de la Rosa, R., Lorite, I.J., Mariotti, R., Cultrera, N.G.M., Beuzón, C.R., González-Plaza, J.J., Muñoz-Mérida, A., Trelles, O., & Baldoni, L. (2018). Usefulness of a New Large Set of High Throughput EST-SNP Markers as a Tool for Olive Germplasm Collection Management. Frontiers in plant science, 9, Article 1320.

Belaj, A., León, L., Pérez Rubio, A.G., de la Rosa, R., & Sanz, C. (2018). Assessment of olive diversity for metabolites associated with the nutritional and sensory quality of virgin olive oil. Acta Horticulturae, 1199, 517-522.

García-Vico, L., Belaj, A., León, L., de la Rosa, R., Sanz, C., & Pérez, A.G. (2018). A survey of ethanol content in virgin olive oil. Food Control, 91, 248-253.

Jiménez-Ruiz, J., Leyva-Pérez, M.O., Vidoy-Mercado, I., Barceló-Muñoz, A., & Luque, F. (2018). Transcriptomic time-series analysis of early development in olive from germinated embryos to juvenile tree. BMC genomics, 19(1), Article 824.

León, L., de la Rosa, R., Velasco, L., & Belaj, A. (2018). Using Wild Olives in Breeding Programs: Implications on Oil Quality Composition. Frontiers in plant science, 9, Article 232.

Leyva-Pérez, M.O., Jiménez-Ruiz, J., Gómez-Lama Cabanás, C., Valverde-Corredor, A., Barroso, J.B., Luque, F., & Mercado-Blanco, J. (2018). Tolerance of olive (Olea europaea) cv Frantoio to Verticillium dahliae relies on both basal and pathogen-induced differential transcriptomic responses. The New phytologist, 217(2), 671–686.

Lorite, I.J., Gabaldón-Leal, C., Ruiz-Ramos, M., Belaj, A., de la Rosa, R., León, L., & Santos, C. (2018). Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agricultural Water Management, 204, 247-261.

Martínez-Fernández, V., Garrido-Godino, A.I., Cuevas-Bermúdez, A., & Navarro, F. (2018). The Yeast Prefoldin Bud27. Advances in experimental medicine and biology, 1106, 109–118.

Martínez-Fernández, V., Garrido-Godino, A.I., Mirón-García, M.C., Begley, V., Fernández-Pévida, A., de la Cruz, J., Chávez, S., & Navarro, F. (2018). Rpb5 modulates the RNA polymerase II transition from initiation to elongation by influencing Spt5 association and backtracking. Biochimica et biophysica Acta-Gene regulatory mechanisms, 1861(1), 1–13.

Martínez-Fernández, V., & Navarro, F. (2018). Rpb5, a subunit shared by eukaryotic RNA polymerases, cooperates with prefoldin-like Bud27/URI. AIMS Genetics, 5(1), 63-74.

Navas-López, J.F., León, L., Rapoport, H.F., Moreno-Alías, I., Medina, M.G., Santos, C., Porras, R., Lorite, I.J., & de la Rosa, R. (2018). Flowering phenology and flower quality of cultivars ‘Arbequina’, ‘Koroneiki’ and ‘Picual’ in different environments of southern Spain. Acta Horticulturae, 1229, 257-262.

Ninot, A., Howad, W., Aranzana, M.J., Senar, R., Romero, A., Mariotti, R., Baldoni, L., & Belaj, A. (2018). Survey of over 4,500 monumental olive trees preserved on-farm in the northeast Iberian Peninsula, their genotyping and characterization. Scientia Horticulturae, 231, 253-264.

Rallo, L., Barranco, D., de la Rosa, R., & León, L. (2018). New olive cultivars and selections in Spain: results after 25 years of breeding. Acta Horticulturae, 1199, 21-26.

Sanz, C., Belaj, A., Sánchez-Ortiz, A., & Pérez, A.G. (2018). Natural variation of volatile compounds in virgin olive oil analyzed by HS-SPME/GC-MS-FID. Separations, 5(2), Article 24.

Sanz, C., & de la Rosa, R. (2018). Fruit phenolic profiling: A new selection criterion in olive breeding programs. Frontiers in plant science, 9, Article 241.

The soil biodiversity and functionality of Mediterranean olive groves: A holistic analysis of the influence of land management on olive oil quality and safety. SOIL O-LIVE

Entidad Financiadora: Programa Horizonte Europa HORIZON-MISS-2021-SOIL-02-03 - Linking soil health to nutritional and safe food. Unión Europea

Referencia: 101091255

Investigador principal: Antonio José Manzaneda Ávila

Año de inicio: 2023

Presupuesto: 6.988.660,00 € (1.035.500,00 € UJA)

Estudio de la diversidad genética para composición acídica y compuestos menores en una colección mundial de variedades de olivo y su interacción genotipo-ambiente

Entidad Financiadora: Concesión de ayudas a Proyectos de Generación de Conocimiento y a actuaciones para la formación de personal investigador predoctoral asociados a dichos proyectos, en el marco del Programa Estatal para Impulsar la Investigación Científico-Técnica y su Transferencia. Convocatoria 2022.Ministerio de Ciencia e Innovación

Referencia: PID2022-143133OR-I00

Investigador principal: Angjelina Belaj

Año de inicio: 2023

Presupuesto: 221.250,00 €

Programa de Mejora Genética de olivo

Entidad Financiadora: FEDER (Fondo Europeo de Desarrollo Regional)

Referencia: AVA23.INV2023.016

Investigador principal: Lorenzo León Moreno

Año de inicio: 2023

Presupuesto: 214.110,00 €

Experimentación y Transferencia en el Olivar

Entidad Financiadora: FEDER (Fondo Europeo de Desarrollo Regional)

Referencia: PR.TRA23.TRA2023.003

Investigador principal: Javier J. Hidalgo Moya

Año de inicio: 2023

Presupuesto: 579.942,00 €

Beyond Xylella, Integrated Strategies for Mitigating Xylella impact in Europe

Entidad Financiadora: Programa Horizonte Europa HORIZON-CL6-2021-FARM2FORK-01-04. Unión Europea.  

Referencia: 101060593

Investigador principal: Angjelina Belaj

Año de inicio: 2022

Presupuesto: 125.000,00 €

Conservación, manejo y utilización de los recursos genéticos del Banco de Germoplasma Mundial de Olivo del IFAPA

Entidad Financiadora: FEADER (Fondo Europeo de Desarrollo Rural)

Referencia: CRF.CRF202200.004

Investigador principal: Angjelina Belaj

Año de inicio: 2022

Presupuesto: 258.500,00 €

Influencia del genotipo y el ambiente en el contenido y composición fenólica en olivo

Entidad Financiadora: Concesión de ayudas a Proyecto de I+D+i en el marco de los programas estatales de generación de conocimiento y fortalecimiento científico y tecnológico del sistema de I+D+i y de I+D+i orientada a los retos de la sociedad. Convocatoria 2020.Ministerio de Ciencia e Innovación

Referencia: PID2020-115853RR-C31

Investigador principal: Lorenzo León Moreno

Año de inicio: 2021

Presupuesto: 217.800,00 €

Genomic and transcriptomic approaches to the identification of key molecular markers and gene variants on phenol content and composition in olive

Entidad Financiadora: Concesión de ayudas a Proyecto de I+D+i en el marco de los programas estatales de generación de conocimiento y fortalecimiento científico y tecnológico del sistema de I+D+i y de I+D+i orientada a los retos de la sociedad. Convocatoria 2020.Ministerio de Ciencia e Innovación

Referencia: PID2020-115853RR-C33                

Investigador principal: Francisco Luque Vázquez

Año de inicio: 2021

Presupuesto: 160.000,00 €


Homeostasia del RNA en células eucariotas: control de la transcripción global durante el ciclo celular y papel de la Prefoldina-like BUD27

Entidad Financiadora: Concesión de ayudas a Proyecto de I+D+i en el marco de los programas estatales de generación de conocimiento y fortalecimiento científico y tecnológico del sistema de I+D+i y de I+D+i orientada a los retos de la sociedad. Convocatoria 2020.Ministerio de Ciencia e Innovación

Referencia: PID2020-112853GB-C33

Investigador principal: Francisco Navarro Gómez

Año de inicio: 2021

Presupuesto: 120.000,00 €


Contribución de la cochaperona prefoldin-like Bud27 a la formación de los complejos transcripcionales de la RNA polimerasa III, a su actividad transcripcional y a la composición proteica de la cromatina en Saccharomyces cerevisiae

Entidad Financiadora: Ayudas a la I+D+i, en el ámbito del Plan Andaluz de Investigación, Desarrollo e Innovación, PAIDI

Referencia: PY20_00792

Investigador principal: Francisco Navarro Gómez

Año de inicio: 2021

Presupuesto: 60.000,00 €

Influencia de la prefoldina-like URI/Bud27 en la expresión y en los niveles intracelulares de tRNA y su correlación con el cáncer

Entidad Financiadora: Junta de Andalucía-Universidad de Jaén (Proyecto FEDER-UJA)

Referencia: 1260360

Investigador principal: Francisco Navarro Gómez

Año de inicio: 2020

Presupuesto: 108.000,00 €

Olive genome sequencing

Determine and identify all genes and their possible functions

Comparison between varieties

Identification of genes with commercial interest

Verticillium wilt diagnostic kit

unit members

Luque Vázquez

Head of Unit

Francisco Navarro Gómez

Senior Researcher

Navarro Gómez

Senior Researcher


María de la O Leyva-Pérez

External Collaborator Researcher

María de la O

External Collaborator Researcher

Moret Sánchez


Serrano Gómez



Raúl de la Rosa Navarro

External Collaborator Researcher

de la Rosa Navarro

External Collaborator Researcher

Lorenzo León Moreno

External Collaborator Researcher

León Moreno

External Collaborator Researcher

Angjelina Belaj

External Collaborator Researcher


External Collaborator Researcher

Yılmaz Düzyaman

External Collaborator Researcher

research units

The INUO is structured into Research Units that bring together an amalgamation of researchers, which although they may belong to different subareas of knowledge, the name of each Unit corresponds to the main lines of research characteristic of the Institute and are as follows:

Scroll to Top

Intranet access

The party responsible for processing the personal data included in this form is the University of Jaén, Campus Las Lagunillas s/n. 23071 Jaen, The data will be processed by the University of Jaén as data controller, for the purpose of the request made through this contact form.

The legitimacy for the treatment is given by the fulfillment of a legal obligation and mission and public power (Organic Law 2/2023, of March 22 of the University System), and in the consent expressed by sending this form.

The data will not be transferred to third parties, except when legally appropriate.

The entity uses the services provided by Google, so international data transfers can be made. These international data transfers are based on standard contractual clauses determined in accordance with the General Data Protection Regulation by the European Commission.

You may exercise the rights of access, rectification, opposition, deletion, limitation of treatment, portability and not being subject to individualized decisions. To exercise these rights, you must send a communication either by written request to the aforementioned address or through the email, specifying which of these rights you request to be satisfied.

You should know that, when the University has reasonable doubts about the applicant’s identity, they may be required to provide the necessary identification documentation to confirm their identity. In the event that he acts through a representative, legal or voluntary, he must also provide a document proving the representation and identification document of the same.

In the event that you consider that your rights have not been duly addressed, you can file a claim with the Andalusian Council for Transparency and Data Protection. or before the Data Protection Delegate of the University of Jaén (

Acceso a Intranet

El responsable del tratamiento de los datos personales incluidos en el presente formulario es la Universidad de Jaén, Campus Las Lagunillas s/n. 23071 Jaén, Los datos serán tratados por la Universidad de Jaén en calidad de responsable del tratamiento, con el fin de la solicitud planteada a través de este formulario de contacto.

La legitimación para el tratamiento viene dada por el cumplimiento de una obligación legal y misión y poder público (Ley Orgánica 2/2023, de 22 de marzo del Sistema Universitario), y en el consentimiento manifestado mediante la remisión del presente formulario.

Los datos no serán cedidos a terceros, salvo cuando legalmente proceda.

La entidad utiliza los servicios prestados por Google, por lo que pueden efectuarse transferencias internacionales de datos. Estas transferencias internacionales de datos se basan en las cláusulas contractuales tipo determinadas conforme al Reglamento General de Protección de Datos por la Comisión Europea.

Ud. podrá ejercitar los derechos de acceso, rectificación, oposición, supresión, limitación del tratamiento, portabilidad y de no ser objeto de decisiones individualizadas. Para ejercitar dichos derechos deberá enviar comunicación bien mediante solicitud escrita a la dirección anteriormente citada o bien a través del correo electrónico, especificando cuál/es de estos derechos solicita sea satisfecho.

Debe saber que, cuando la Universidad tenga dudas razonables sobre la identidad del solicitante, se le podrá requerir que facilite la documentación identificativa necesaria para confirmar su identidad. En caso de que actuara mediante representante, legal o voluntario, deberá aportar también documento que acredite la representación y documento identificativo del mismo.

En el supuesto que usted considere que sus derechos no han sido debidamente atendidos, puede presentar una reclamación ante el Consejo de Transparencia y Protección de Datos de Andalucía. o ante el Delegado de Protección de Datos de la Universidad de Jaén (