Research Units
Analytical Chemistry Unit

Analytical Chemistry Unit

PAIDI Group in the Unit:

This unit investigates the development and application of quality control methodologies aimed at the detection of organic contaminants (such as pesticide residues) and other compounds of interest in food industry, specially, in olive oil, olives and by-products of this sector. For this reason, one of its fundamental lines of research consists of developing scientific instruments to improve the productive capacity of analysis laboratories.

2022

Bartella, L., Bouza, M., Rocío-Bautista, P., Di Donna, L., García-Reyes, J.F., & Molina-Díaz, A. (2022). Direct wine profiling by mass spectrometry (MS): A comparison of different ambient MS approaches. Microchemical Journal, 179, Article 107479. https://doi.org/10.1016/j.microc.2022.107479

Chafi, S., Azzouz, A., & Ballesteros, E. (2022). Occurrence and distribution of endocrine disrupting chemicals and pharmaceuticals in the river Bouregreg (Rabat, Morocco). Chemosphere, 287(Pt 2), Article 132202. https://doi.org/10.1016/j.chemosphere.2021.132202

Chafi, S., & Ballesteros, E. (2022). A sensitive, robust method for determining natural and synthetic hormones in surface and wastewaters by continuous solid-phase extraction–gas chromatography–mass spectrometry. Environmental Science and Pollution Research International, 29(35), 53619-53632. https://doi.org/10.1007/s11356-022-19577-1

Gila, A., Aguilera, M.P., Sánchez-Ortiz, A., Jiménez, A., & Beltrán, G. (2022). Effect of centrifugal force (G) on stability of natural emulsions (water/oil) present in fresh virgin olive oils. Journal of Food Engineering, 334, Article 111169. https://doi.org/10.1016/j.jfoodeng.2022.111169

Palacios Colón, L., Rascón, A.J., & Ballesteros, E. (2022). Trace-Level Determination of Polycyclic Aromatic Hydrocarbons in Dairy Products Available in Spanish Supermarkets by Semi-Automated Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry Detection. Foods, 11(5), Article 713. https://doi.org/10.3390/foods11050713

Riasová, P., Jenčo, J., Moreno-González, D., Vander Heyden, Y., Mangelings, D., Polášek, M., & Jáč, P. (2022). Development of a capillary electrophoresis method for the separation of flavonolignans in silymarin complex. Electrophoresis, 43(9-10), 930-938. https://doi.org/10.1002/elps.202100212

2021

Beltrán, G., Bejaoui, M.A., Sánchez-Ortiz, A., & Jiménez, A. (2021). Water addition during oil extraction affects on virgin olive oil etanol content, quality and composition. European Journal of Lipid Science and Technology, 123(11), Article 2000400. https://doi.org/10.1002/ejlt.202000400

Beltrán, G., Hueso, A., Bejaoui, M.A., Gila, A.M., Costales, R., Sánchez-Ortiz, A., Aguilera, M.P., & Jiménez, A. (2021). How olive washing and storage affect fruit ethanol and virgin olive oil ethanol, ethyl esters and composition. Journal of the science of food and agriculture, 101(9), 3714–3722. https://doi.org/10.1002/jsfa.11002

Bouza, M., Gilbert-López, B., García-Reyes, J.F., & Rodríguez Ortega, P.G. (2021). Measuring the mass of an electron: an undergraduate laboratory experiment with high resolution mass spectrometry. Chemistry Teacher International, 4(1), 15-22. https://doi.org/10.1515/cti-2021-0016

Castilla-Fernández, D., Moreno-González, D., Bouza, M., Saez-Gómez, A., Ballesteros, E., García-Reyes, J.F., & Molina-Díaz, A. (2021). Assessment of a specific sample cleanup for the multiresidue determination of veterinary drugs and pesticides in salmon using liquid chromatography/tandem mass spectrometry. Food Control, 130, Article 108311. https://doi.org/10.1016/j.foodcont.2021.108311

Castilla-Fernández, D., Moreno-González, D., García-Reyes, J.F., Ballesteros, E., & Molina-Díaz, A. (2021). Determination of atropine and scopolamine in spinach-based products contaminated with Genus datura by UHPLC–MS/MS. Food Chemistry, 347, Article 129020. https://doi.org/10.1016/j.foodchem.2021.129020

Castilla-Fernández, D., Moreno-González, D., Gilbert-López, B., García-Reyes, J.F., & Molina-Díaz, A. (2021). Worldwide survey of pesticide residues in citrus-flavored soft drinks. Food Chemistry, 365, Article 130486. https://doi.org/10.1016/j.foodchem.2021.130486

Castilla-Fernández, D., Moreno-González, D., Murillo-Cruz, M.C., García-Reyes, J.F., & Molina-Díaz, A. (2021). Appraisal of different clean-up strategies for the determination of fipronil and its metabolites in eggs by UHPLC-MS/MS. Microchemical Journal, 166, Article 106275. https://doi.org/10.1016/j.microc.2021.106275

Gila, A., Sánchez-Ortiz, A., Jiménez, A., & Beltrán, G. (2021). The ultrasound application does not affect to the thermal properties and chemical composition of virgin olive oils. Ultrasonics sonochemistry, 70, Article 105320. https://doi.org/10.1016/j.ultsonch.2020.105320

Hejji, L., Azzouz, A., Palacios Colón, L., Souhail, B., & Ballesteros, E. (2021). A multi-residue method for determining twenty-four endocrine disrupting chemicals in vegetables and fruits using ultrasound-assisted solid–liquid extraction and continuous solid-phase extraction. Chemosphere, 263, Article 128158. https://doi.org/10.1016/j.chemosphere.2020.128158

Moreno-González, D., Castilla-Fernández, D., Vogel, P., Niu, G., Brandt, S., Drees, C., García-Reyes, J.F., Molina-Díaz, A., & Franzke, J. (2021). Evaluation of a novel controlled-atmosphere flexible microtube plasma soft ionization source for the determination of BTEX in olive oil by headspace-gas chromatography/mass spectrometry. Analytica Chimica Acta, 1179, Article 338835. https://doi.org/10.1016/j.aca.2021.338835

Palacios Colón, L., Rascón, A.J., Hejji, L., Azzouz, A., & Ballesteros, E. (2021). Validation and use of an accurate, sensitive method for sample preparation and gas chromatography–mass  spectrometry determination of different endocrine-disrupting chemicals in dairy products. Foods, 10(5), Article 1040. https://doi.org/10.3390/foods10051040

2020

Azzouz, A., Palacios-Colón, L., Hejji, L., & Ballesteros-Tribaldo, E.A. (2020). Determination of alkylphenols, phenylphenols, bisphenol A, parabens, organophosphorus pesticides and triclosan in different cereal-based foodstuffs by gas chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 412, 2621-2631. https://doi.org/10.1007/s00216-020-02491-1

Beneito-Cambra, M., Gilbert-López, B., Moreno-González, D., Bouza, M., Franzke, J., García-Reyes, J.F., & Molina-Díaz, A. (2020). Ambient (desorption/ionization) mass spectrometry methods for pesticide testing in food: a review. Analytical Methods: Advancing Methods and Applications, 12(40), Article 4831-4852. https://doi.org/10.1039/d0ay01474e

Beneito-Cambra, M., Moreno-González, D., García-Reyes, J.F., Bouza, M., Gilbert-López, B., & Molina-Díaz, A. (2020). Direct analysis of olive oil and other vegetable oils by mass spectrometry: A review. TrAC Trends in Analytical Chemistry, 132, Article 116046. https://doi.org/10.1016/j.trac.2020.116046

Bourebaba, L., Gilbert-López, B., Oukil, N., & Bedjou, F. (2020). Phytochemical composition of Ecballium elaterium extracts with antioxidant and anti-inflammatory activities: Comparison among leaves, flowers and fruits extracts. Arabian Journal of Chemistry, 13(1), 3286-3300. https://doi.org/10.1016/j.arabjc.2018.11.004

Cuadros-Rodríguez, L., Lazúen-Muros, M., Ruiz-Samblás, C., & Navas-Iglesias, N. (2020). Leachables from plastic materials in contact with drugs. State of the art and review of current analytical approaches. International journal of pharmaceutics, 583, Article 119332. https://doi.org/10.1016/j.ijpharm.2020.119332

Gila, A., Bejaoui, M.A., Beltrán, G., & Jiménez, A. (2020). Rapid method based on computer vision to determine the moisture and insoluble impurities content in virgin olive oils. Food control, 113, Article 107210. https://doi.org/10.1016/j.foodcont.2020.107210

Gila, A., Sánchez-Ortíz, A., Beltrán, G., Bejaoui, M.A., Aguilera, M.P., & Jiménez, A. (2020). Effect of clarification system on the conservation of virgin olive oil during its storage. European Journal of Lipid Science and Technology, 122(4), Article 1900426. https://doi.org/10.1002/ejlt.201900426

Jáč, P., Bubáková, Z., Moreno-González, D., Kováčová, G., Špulák, M., & Polášek, M. (2020). Stability study of -bromophenylacetic acid: Does it represent an appropriate model analyte for chiral separations? Electrophoresis, 41(18-19), 1557-1563. https://doi.org/10.1002/elps.202000088

Karttunen, A.P., Poms, J., Sacher, S., Sparén, A., Ruiz Samblás, C., Fransson, M., Martin De Juan, L., Remmelgas, J., Wikström, H., Hsiao, W.K., Folestad, S., Korhonen, O., Abrahmsén-Alami, S., & Tajarobi, P. (2020). Robustness of a continuous direct compression line against disturbances in feeding. International journal of pharmaceutics, 574, Article 118882. https://doi.org/10.1016/j.ijpharm.2019.118882

Knodel, A., Foest, D., Brandt, S., Ahlmann, N., Marggraf, U., Gilbert-López, B., & Franzke, J. (2020). Detection and Evaluation of Lipid Classes and Other Hydrophobic Compounds Using a Laser Desorption/Plasma Ionization Interface. Analytical Chemistry, 92(22), 15212-15220. https://doi.org/10.1021/acs.analchem.0c03839

Knodel, A., Marggraf, U., Ahlmann, N., Brandt, S., Foest, D., Gilbert-López, B., & Franzke, J. (2020). Standardization of sandwich-structured Cu-Glass substrates embedded in a flexible diode laser-plasma interface for the detection of cholesterol. Analytical Chemistry, 92(6), 4663-4671. https://doi.org/10.1021/acs.analchem.0c00311

Mata-Pérez, C., Padilla-Serrano, M.N., Sánchez-Calvo, B., Begara-Morales, J.C., Valderrama-Rodríguez, R., Chaki, M., Aranda-Caño, L., Moreno-González, D., Molina-Díaz, A., & Barroso-Albarracín, J.B. (2020). Endogenous Biosynthesis of S-Nitrosoglutathione From Nitro-Fatty Acids in Plants. Frontiers in Plant Science, 11, Article 962. https://doi.org/10.3389/fpls.2020.00962

Michael, S.G., Michael-Kordatou, I., Nahim-Granados, S., Polo-López, M.I., Rocha, J., Martínez-Piernas, A.B., Fernández-Ibáñez, P., Agüera-López, A., Manaia, C.M., & Fatta-Kassinos, D. (2020). Investigating the impact of UV-C/H2O2 and sunlight/H2O2 on the removal of antibiotics, antibiotic resistance determinants and toxicity present in urban wastewater. Chemical Engineering Journal, 388, Article 124383. https://doi.org/10.1016/j.cej.2020.124383

Moreno-González, D., Cutillas, V., Hernando, M.D., Alcántara-Durán, J., García-Reyes, J.F., & Molina-Díaz, A. (2020). Quantitative determination of pesticide residues in specific parts of bee specimens by nanoflow liquid chromatography high resolution mass spectrometry. The Science of the Total Environment, 715, Article 137005. https://doi.org/10.1016/j.scitotenv.2020.137005

Moreno-González, D., Jáč, P., Švec, F., & Nováková, L. (2020). Determination of Sudan dyes in chili products by micellar electrokinetic chromatography-MS/MS using a volatile surfactant. Food chemistry, 310, Article 125963. https://doi.org/10.1016/j.foodchem.2019.125963

Muñoz-Almagro, N., Gilbert-López, B., Pozuelo-Rollón, M.C., García-Fernández, Y., Almeida, C., Villamiel, M., Mendiola, J.A., & Ibáñez, E. (2020). Exploring the Microalga Euglena cantabrica by Pressurized Liquid Extraction to Obtain Bioactive Compounds. Marine Drugs, 18(6), Article 308. https://doi.org/10.3390/md18060308

Rocío-Bautista, P., Famiglini, G., Termopoli, V., Palma, P., Nazdrajić, E., Pawliszyn, J., & Cappiello, A. (2020). Direct coupling of Bio-SPME to liquid electron ionization-MS/MS via a modified microfluidic open interface. Journal of the American Society for Mass Spectrometry, 32(1), 262-269. https://doi.org/10.1021/jasms.0c00303

Rocio-Bautista, P., Gutiérrez-Serpa, A., Cruz, A.J., Ameloot, R., Ayala, J.H., Afonso, A.M., Pasán, J., Rodríguez-Hermida, S., & Pino, V. (2020). Solid-phase microextraction coatings based on the metal-organic framework ZIF-8: Ensuring stable and reusable fibers. Talanta, 215, Article 120910. https://doi.org/10.1016/j.talanta.2020.120910

Termopoli, V., Famiglini, G., Vocale, P., Morini, G.L., Palma, P., Rocío-Bautista, P., Saeed, M., Perry, S., & Cappiello, A. (2020). Microfluidic water-assisted trap focusing method for ultra-large volume injection in reversed-phase nano-liquid chromatography coupled to electron ionization tandem-mass spectrometry. Journal of Chromatography A, 1627, Article 461421. https://doi.org/10.1016/j.chroma.2020.461421

Vogel, P., Lazarou, C., Gazeli, O., Brandt, S., Franzke, J., & Moreno-González, D. (2020). Study of Controlled Atmosphere Flexible Microtube Plasma Soft Ionization Mass Spectrometry for Detection of Volatile Organic Compounds as Potential Biomarkers in Saliva for Cancer. Analytical Chemistry, 92(14), 9722-9729. https://doi.org/10.1021/acs.analchem.0c01063

2019

Alcántara-Durán, J., Moreno-González, D., García-Reyes, J.F., & Molina-Díaz, A. (2019). Use of a modified QuEChERS method for the determination of mycotoxin residues in edible nuts by nano flow liquid chromatography high resolution mass spectrometry. Food Chemistry, 279, 144-149. https://doi.org/10.1016/j.foodchem.2018.11.149

Azzouz, A., Goud, K.Y., Raza, N., Ballesteros, E., Lee, S-E., Hong, J., Deep, A., & Kim, K-H. (2019). Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. Trends in Analytical Chemistry, 110, 15-34. https://doi.org/10.1016/j.trac.2018.08.002

Castilla-Fernández, D., Moreno-González, D., Beneito-Cambra, M., & Molina-Díaz, A. (2019). Critical assessment of two sample treatment methods for multiresidue determination of veterinary drugs in milk by UHPLC-MS/MS. Analytical and Bioanalytical Chemistry, 411(7), 1433-1442. https://doi.org/10.1007/s00216-019-01582-y

Gilbert-López, B., Lara-Ortega, F.J., Robles-Molina, J., Brandt, S., Schütz, A., Moreno-González, D., García-Reyes, J.F., Molina-Díaz, A., & Franzke, J. (2019). Detection of multiclass explosives and related compounds in soil and water by liquid chromatography-dielectric barrier discharge ionization-mass spectrometry. Analytical and Bioanalytical Chemistry, 411(19), 4785-4796. https://doi.org/10.1007/s00216-019-01627-2

Jiménez Márquez, A., & Beltrán Maza, G. (2019). Gray-level Co-Occurrence Matrix application to Images Processing of crushed Olives fruits. Revista Iberoamericana de Inteligencia Artificial, 22(64), 135–142. https://doi.org/10.4114/intartif.vol22iss64pp135-142

Nabet, N., Gilbert-López, B., Madani, K., Herrero, M., Ibáñez, E., & Mendiola, J.A. (2019). Optimization of microwave-assisted extraction recovery of bioactive compounds from Origanum glandulosum and Thymus fontanesii. Industrial Crops and Products, 129, 395-404. https://doi.org/10.1016/j.indcrop.2018.12.032

Rascón, A.J., Azzouz, A., & Ballesteros-Tribaldo, E.A. (2019). Use of semi-automated continuous solid-phase extraction and gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in alcoholic and non-alcoholic drinks from Andalucia (Spain). Journal of the Science of Food and Agriculture, 99(3), 1117-1125. https://doi.org/10.1002/jsfa.9279

Rodríguez-Ortega, P.G., Gilbert-López, B., Esteo-Donaire, S., & Montejo-Gámez, M. (2019). Study of the effect of volume contraction in methanol-water mixtures used as solvents for analytical purposes: a student-centered project for practical learning. Journal of Chemical Education, 96(4), 677-684. https://doi.org/10.1021/acs.jchemed.8b00850

2018

Alcántara-Durán, J., Moreno-González, D., Beneito-Cambra, M., & García-Reyes, J.F. (2018). Dilute-and-shoot coupled to nanoflow liquid chromatography high resolution mass spectrometry for the determination of drugs of abuse and sport drugs in human urine. Talanta, 182, 218–224. https://doi.org/10.1016/j.talanta.2018.01.081

Alcántara-Durán, J., Moreno-González, D., Gilbert-López, B., Molina-Díaz, A., & García-Reyes, J.F. (2018). Matrix-effect free multi-residue analysis of veterinary drugs in food samples of animal origin by nanoflow liquid chromatography high resolution mass spectrometry. Food chemistry, 245, 29–38. https://doi.org/10.1016/j.foodchem.2017.10.083

Azzouz, A., Kailasa, S.K., Lee, S.S., Rascón, A.J., Ballesteros-Tribaldo, E.A., Zhang, M., & Kim, K-H. (2018). Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC Trends in Analytical Chemistry, 108, 347-369. http://doi.org/10.1016/j.trac.2018.08.009

Bejaoui, M.A., Sánchez-García, A., Aguilera, M.P., Ruiz-Moreno, M.J., Sánchez-Villasclaras, S., Jiménez, A., & Beltrán-Maza, G. (2018). High power ultrasound frequency for olive paste conditioning: effect on the virgin olive oil bioactive compounds and sensorial characteristics.  Innovative Food Science & Emerging Technologies, 47, 136-145. https://doi.org/10.1016/j.ifset.2018.02.002

Borbála-Both, E., Moreno-González, D., García-Reyes, J.F., & Dernovics, M. (2018). Monitoring the degradation of atropine and scopolamine in soil after spiking with naturally contaminated organic millet. The Science of the total environment, 625, 1088–1092. https://doi.org/10.1016/j.scitotenv.2017.12.344

Domínguez-Romero, J.C., Gilbert-López, B., Beneito-Cambra, M., & Molina-Díaz, A. (2018). Renewable chemiluminescence optosensors based on implementation of bead injection principle with multicommutation. Talanta, 182, 267-272. https://doi.org/10.1016/j.talanta.2018.01.091

Funes, E., Allouche, Y., Beltrán, G., Aguilera, M.P., & Jiménez, A. (2018). Predictive ANN models for the optimization of extra virgin olive oil clarification by means of vertical centrifugation. Journal of Food Process Engineering, 41(1), Article e12593. https://doi.org/10.1111/jfpe.12593

Gila, A., Bejaoui, M.A., Beltrán, G., Aguilera, M.P., & Jiménez, A. (2018). Study of virgin olive oil clarification by settling under dynamic conditions. Journal of the science of food and agriculture, 98(14), 5361–5367. https://doi.org/10.1002/jsfa.9077

Grande-Martínez, Á., Moreno-González, D., Arrebola-Liébanas, F.J., Garrido-Frenich, A., & García-Campaña, A.M. (2018). Optimization of a modified QuEChERS method for the determination of tetracyclines in fish muscle by UHPLC-MS/MS. Journal of pharmaceutical and biomedical analysis, 155, 27–32. https://doi.org/10.1016/j.jpba.2018.03.029

Lara-Ortega, F.J., Beneito-Cambra, M., Robles-Molina, J., García-Reyes, J.F., Gilbert-López, B., & Molina-Díaz, A. (2018). Direct olive oil analysis by mass spectrometry: A comparison of different ambient ionization methods. Talanta, 180, 168–175. https://doi.org/10.1016/j.talanta.2017.12.027

Lara-Ortega, F.J., Gilbert-López, B., Beneito-Cambra, M., & Molina-Díaz, A. (2018). Multicommuted flow injection analysis using chemiluminescence detection (MCFIA-CL) for olive oil analysis. Food Analytical Methods, 11, 1804-1814. https://doi.org/10.1007/s12161-018-1182-5

Lara-Ortega, F.J., Robles-Molina, J., Brandt, S., Schütz, A., Gilbert-López, B., Molina-Díaz, A., García-Reyes, J.F., & Franzke, J. (2018). Use of dielectric barrier discharge ionization to minimize matrix effects and expand coverage in pesticide residue analysis by liquid chromatography-mass spectrometry. Analytica Chimica Acta, 1020, 76-85. https://doi.org/10.1016/j.aca.2018.02.077

López-Blanco, R., Moreno-González, D., Nortes-Méndez, R., García-Reyes, J.F., Molina-Díaz, A., & Gilbert-López, B. (2018). Experimental and theoretical determination of pesticide processing factors to model their behaviour during virgin olive oil production. Food Chemistry, 239, 9-16. https://doi.org/10.1016/j.foodchem.2017.06.086

Montero, L., Sánchez-Camargo, A.P., Ibáñez, E., & Gilbert-López, B. (2018). Phenolic Compounds from Edible Algae: Bioactivity and Health Benefits. Current medicinal chemistry, 25(37), 4808–4826. https://doi.org/10.2174/0929867324666170523120101

Moreno-González, D., Alcántara-Durán, J., Addona, S.M., & Beneito-Cambra, M. (2018). Multi-residue pesticide analysis in virgin olive oil by nanoflow liquid chromatography high resolution mass spectrometry. Journal of Chromatography A, 1562, 27-35. https://doi.org/10.1016/j.chroma.2018.05.053

Moreno-González, D., Alcántara-Durán, J., Gilbert-López, B., Beneito-Cambra, M., Cutillas, V.M., Rajski, Ł., Molina-Díaz, A., & García-Reyes, J.F. (2018). Sensitive Detection of Neonicotinoid Insecticides and Other Selected Pesticides in Pollen and Nectar Using Nanoflow Liquid Chromatography Orbitrap Tandem Mass Spectrometry. Journal of AOAC International, 101(2), 367–373. https://doi.org/10.5740/jaoacint.17-0412

Moreno-González, D., Krulišová, M., Gámiz-Gracia, L., & García-Campaña, A.M. (2018). Determination of tetracyclines in human urine samples by capillary electrophoresis in combination with field amplified sample injection. Electrophoresis, 39(4), 608-615. https://doi.org/10.1002/elps.201700288

Quintero-Flórez, A., Pereira-Caro, G., Sánchez-Quezada, C., Moreno-Rojas, J.M., Gaforio, J.J., Jiménez, A., & Beltrán, G. (2018). Effect of olive cultivar on bioaccessibility and antioxidant activity of phenolic fraction of virgin olive oil. European journal of nutrition, 57(5), 1925–1946. https://doi.org/10.1007/s00394-017-1475-2

Rascón, A.J., Azzouz, A., & Ballesteros-Tribaldo, E.A. (2018). Determination of polycyclic aromatic hydrocarbons in environmental waters from southern spain by using a continuous solid-phase extraction system and gas chromatography-mass spectrometry. Environmental Chemistry, 15(6), 351-361. https://doi.org/10.1071/EN18106

Rascón, A.J., Azzouz, A., & Ballesteros-Tribaldo, E.A. (2018). Multiresidue determination of polycyclic aromatic hydrocarbons in edible oils by liquid-liquid extraction-solid-phase extraction-gas chromatography-mass spectrometry. Food Control, 94, 268-275. https://doi.org/10.1016/j.foodcont.2018.07.015

Sánchez-Camargo, A.P., Pleite, N., Mendiola, J.A., Cifuentes, A.,  Herrero, M., Gilbert-López, B., & Ibáñez, E. (2018). Development of green extraction processes for Nannochloropsis gaditana biomass valorization. Electrophoresis, 39(15), 1875-1883. https://doi.org/10.1002/elps.201800122

Sánchez-Ortiz, A., Bejaoui, M.A., Quintero-Flores, A., Jiménez, A., & Beltrán, G. (2018). "Biosynthesis of volatile compounds by hydroperoxide lyase enzymatic activity during virgin olive oil extraction process". Food Research international (Ottawa, Ont.), 111, 220–228. https://doi.org/10.1016/j.foodres.2018.05.024

Tripodo, G., Ibáñez, E., Cifuentes, A., Gilbert-López, B., & Fanali, C. (2018). Optimization of pressurized liquid extraction by response surface methodology of Goji berry (Lycium barbarum L.) phenolic bioactive compounds. Electrophoresis, 39(13), 1673–1682. https://doi.org/10.1002/elps.201700448

Valverde-Som, L., Carrasco-Pancorbo, A., Sierra, S., Santana, S., Ruiz-Samblás, C., Navas, N., Burgos, J.S., & Cuadros-Rodríguez, L. (2018). Separation and determination of some of the main cholesterol-related compounds in blood by gas chromatography-mass spectrometry (Selected lon monitoring mode). Separations, 5(1), Article 17. https://doi.org/10.3390/separations5010017

Valverde-Som, L., Ruiz-Samblás, C., & Rodríguez-García, F.P. (2018). Multivariate approaches for stability control of the olive oil reference materials for sensory analysis-part I: framework and fundamentals. Journal of the Science of Food and Agriculture, 98(11), 4237-4244. https://doi.org/10.1002/jsfa.8948

Valverde-Som, L., Ruiz-Samblás, C., Rodríguez-García, F.P., & Cuadros-Rodríguez, L. (2018). Multivariate approaches for stability control of the olive oil reference materials for sensory analysis - part II: applications. Journal of the science of food and agriculture, 98(11), 4245–4252. https://doi.org/10.1002/jsfa.8946

Instrumento estratégico hacia un tejido productivo,  Agroalimentario, Moderno, Innovador y  Sostenible: motor del territorio rural andaluz: Desarrollo de bioindicadores que determinen el perfil físico-químico y sensorial de los aceites de oliva vírgenes

Entidad Financiadora: Campus de Excelencia Internacional en Agroalimentación. Proyecto singular AgroMIS

Referencia: A1122062E0_AGROMIS ceiA3-UCO 2019

Investigador principal: Antonio Molina Díaz

Año de inicio: 2020

Presupuesto: 35.000,00 €

 

Implementación de nuevos dispositivos de ionización por descarga de barrera dieléctrica en metabolómica y seguridad alimentaria

Entidad Financiadora: Junta de Andalucía-Universidad de Jaén (Proyecto FEDER-UJA)

Referencia: 1264521

Investigador principal: Antonio Molina Díaz

Año de inicio: 2020

Presupuesto: 79.962,82 €

 

Clasificación de aceites de oliva de diferentes categorías comerciales mediante espectrometría de masas de alta resolución y aproximaciones de metabolómica no dirigida

Entidad Financiadora: Junta de Andalucía-Universidad de Jaén (Proyecto FEDER-UJA)

Referencia: 1263809

Investigador principal: David Moreno González

Año de inicio: 2020

Presupuesto: 97.000,00 €

  

Novel approaches to promote the sustainability of Olive groves in the Mediterranean (SUSTAINOLIVE)         

Entidad financiadora: Convocatoria Europea PRIMA (Partnership for Research and Innovation in the Mediterranean Area). Cofinanciado con fondos Horizon 2020 Framework Programme of the European Union

Referencia: Farming System 9

Investigador principal: Roberto García Ruiz                  

Año de inicio: 2019

Presupuesto: 2.032.690,17 €

  

Desarrollo de nuevas aproximaciones basadas en basadas en cromatografía-espectrometría de masas para la resolución de problemas de gran interés social en el campo de la calidad y la seguridad alimentaria del aceite de oliva

Entidad Financiadora: Ayudas a la I+D+i, en el ámbito del Plan Andaluz de Investigación, Desarrollo e Innovación, PAIDI

Referencia: P18-RT-1211

Investigador principal: Antonio Molina Díaz

Año de inicio: 2020

Presupuesto: 140.500,00 €

 

Advancing mass spectrometry: Ionization and applications

Entidad Financiadora: Acciones de dinamización de carácter internacional “EUROPA INVESTIGACIÓN”. Programa Estatal de investigación, desarrollo e innovación orientada a los retos de la sociedad

Referencia: EUIN2017-88337

Investigador principal: Juan Francisco García Reyes

Año de inicio: 2018

Presupuesto: 22.500,00 €

 

Twinning in atmospheric Plasma science and applications (TImPANI)

Entidad Financiadora: Horizonte 2020. Prorama Twinning of research institutions

Referencia: H2020-EU.4.b. - 810686

Investigador principal: George Georgiou

Año de inicio: 2018

Presupuesto: 999.625,00 €

 

Nuevas aproximaciones experimentales a la solución de las limitaciones actuales de la cromatografía de líquidos/espectrometría de masas (LC-MS) en análisis de contaminantes

Entidad Financiadora: Concesión de ayudas a «Proyectos de I+D+i», en el marco del Programa Estatal de Generación de Conocimiento y Fortalecimiento Científico y Tecnológico del Sistema de I+D+i y del Programa Estatal de I+D+i Orientada a los Retos de la Sociedad, del Plan Estatal de Investigación Científica y Técnica y de Innovación 2015

Referencia: CTQ-2015-71321-P

Investigadores principales: Antonio Molina Díaz y Juan Francisco García Reyes

Año de inicio: 2016

Presupuesto: 67.518,00 €

Private companies and public institutions related to the olive oil and olive sector

Technical advice in chemistry

unit members

Juan Francisco
García Reyes

Head of Unit

Antonio Molina Díaz

Senior Researcher

Antonio
Molina Díaz

Senior Researcher

Evaristo Antonio
Ballesteros Tribaldo

Senior Researcher

Bienvenida Gilbert López

Senior Researcher

Bienvenida
Gilbert López

Senior Researcher

David
Moreno González

Researcher

Delia
Castilla Fernández

Researcher

Marcos
Bouza Areces

Researcher

Priscilla
Rocío Bautista

Researcher

Andrés Jesús
Rascón López

Researcher

Julio
García Martínez

Researcher

Alfonso
Fernández García

Researcher

Irene
Caño Carrillo

Researcher

Antonio Jiménez Márquez

External Collaborator Researcher

Antonio
Jiménez Márquez

External Collaborator Researcher

research units

The INUO is structured into Research Units that bring together an amalgamation of researchers, which although they may belong to different subareas of knowledge, the name of each Unit corresponds to the main lines of research characteristic of the Institute and are as follows:

Scroll to Top

Intranet access

The party responsible for processing the personal data included in this form is the University of Jaén, Campus Las Lagunillas s/n. 23071 Jaen, dpo@ujaen.es. The data will be processed by the University of Jaén as data controller, for the purpose of the request made through this contact form.

The legitimacy for the treatment is given by the fulfillment of a legal obligation and mission and public power (Organic Law 2/2023, of March 22 of the University System), and in the consent expressed by sending this form.

The data will not be transferred to third parties, except when legally appropriate.

The entity uses the services provided by Google, so international data transfers can be made. These international data transfers are based on standard contractual clauses determined in accordance with the General Data Protection Regulation by the European Commission.

You may exercise the rights of access, rectification, opposition, deletion, limitation of treatment, portability and not being subject to individualized decisions. To exercise these rights, you must send a communication either by written request to the aforementioned address or through the email dpo@ujaen.es, specifying which of these rights you request to be satisfied.

You should know that, when the University has reasonable doubts about the applicant’s identity, they may be required to provide the necessary identification documentation to confirm their identity. In the event that he acts through a representative, legal or voluntary, he must also provide a document proving the representation and identification document of the same.

In the event that you consider that your rights have not been duly addressed, you can file a claim with the Andalusian Council for Transparency and Data Protection. www.ctpdandalucia.es or before the Data Protection Delegate of the University of Jaén (dpo@ujaen.es).

Acceso a Intranet

El responsable del tratamiento de los datos personales incluidos en el presente formulario es la Universidad de Jaén, Campus Las Lagunillas s/n. 23071 Jaén, dpo@ujaen.es. Los datos serán tratados por la Universidad de Jaén en calidad de responsable del tratamiento, con el fin de la solicitud planteada a través de este formulario de contacto.

La legitimación para el tratamiento viene dada por el cumplimiento de una obligación legal y misión y poder público (Ley Orgánica 2/2023, de 22 de marzo del Sistema Universitario), y en el consentimiento manifestado mediante la remisión del presente formulario.

Los datos no serán cedidos a terceros, salvo cuando legalmente proceda.

La entidad utiliza los servicios prestados por Google, por lo que pueden efectuarse transferencias internacionales de datos. Estas transferencias internacionales de datos se basan en las cláusulas contractuales tipo determinadas conforme al Reglamento General de Protección de Datos por la Comisión Europea.

Ud. podrá ejercitar los derechos de acceso, rectificación, oposición, supresión, limitación del tratamiento, portabilidad y de no ser objeto de decisiones individualizadas. Para ejercitar dichos derechos deberá enviar comunicación bien mediante solicitud escrita a la dirección anteriormente citada o bien a través del correo electrónico dpo@ujaen.es, especificando cuál/es de estos derechos solicita sea satisfecho.

Debe saber que, cuando la Universidad tenga dudas razonables sobre la identidad del solicitante, se le podrá requerir que facilite la documentación identificativa necesaria para confirmar su identidad. En caso de que actuara mediante representante, legal o voluntario, deberá aportar también documento que acredite la representación y documento identificativo del mismo.

En el supuesto que usted considere que sus derechos no han sido debidamente atendidos, puede presentar una reclamación ante el Consejo de Transparencia y Protección de Datos de Andalucía. www.ctpdandalucia.es o ante el Delegado de Protección de Datos de la Universidad de Jaén (dpo@ujaen.es).